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We investigate the effect of a dynamical collective mode coupled with quasiparticles at specific wave vectors
only. This coupling describes the incipient tendency to order and produces shadow spectral features at high
energies while leaving essentially untouched the low-energy quasiparticles. This allows interpretation of seem-
ingly contradictory experiments on underdoped cuprates, where many converging evidences indicate the pres-
ence of charge �stripe or checkerboard� order, which remains instead elusive in the Fermi surface obtained from
angle-resolved photoemission experiments.
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I. INTRODUCTION

Strongly correlated systems such as the heavy fermions
and the superconducting cuprates display excitations over a
variety of energy scales. On short time scales �high energies�
electrons are excited incoherently over energies ranging from
the highest local �Hubbard U� repulsion to the magnetic su-
perexchange interaction. On the other hand, over long time
scales, i.e., at low energies around the Fermi level, the exci-
tations can acquire a coherent character typical of the long-
lived Fermi-liquid quasiparticles �QPs�. These energy scales
appear very clearly both in theoretical1 and experimental2

studies of the one particle spectral function of strongly cor-
related systems. It is usually assumed that the incoherent part
has no momentum structure, an assumption which is empha-
sized by infinite dimensional studies where the self-energy is
momentum independent and informations on spatial quasi-
long-range correlations close to a phase transition are lost.1

In this paper we discuss how this picture is modified in
physical spatial dimensions. We want to address what the
spectral function looks like when the system is close to an
ordered phase. This issue is particularly important in the con-
text of cuprates where it has been proposed that some kind of
stripelike order fluctuates in the metallic phase.3–5

The scenario that we propose is based on the following
qualitative argument: In physical dimensions a system may
have long- �but finite� ranged order-parameter �OP� spatial
correlations which are also long lived close to a quantum
critical point. This defines a fluctuating frequency �0 above
which the systems appear to be ordered. We argue that for
energies larger than �0 with respect to the Fermi level the
spectra should resemble the spectral function of an ordered
system. This spectral weight resides in what is usually called
the incoherent part, which—we argue—can have some im-
portant momentum structure. On the other hand at lower en-
ergies electrons average over the order-parameter fluctua-
tions and “sense” a disordered system. In this limit we expect
Fermi-liquid QPs with all their well-known characteristics
such as a Luttinger Fermi surface �FS�.

To understand the momentum structure of the spectral
function at energies higher than �0 is important because if

the incoherent part carries a memory of the close-by ordered
phase it should be possible to analyze it to obtain pieces of
information on what the underlying fluctuating order is. Usu-
ally ordered systems are well described by mean field thus
one can obtain a first guess of what the incoherent part of the
spectral function in the disordered phase should look like by
performing a mean-field computation assuming long-range
order. Comparison with experimental data in the absence of
long-range order can be useful to identify the fluctuating
order parameter.

To fix ideas consider as an example a moderately large U
Hubbard system in a half-filled bipartite lattice in two dimen-
sions at T=0. In this case an antiferromagnetic state is ex-
pected to be a competitive low-energy state. When the sys-
tem is in the ordered phase the spectral function will be
reasonably well described by a mean-field computation and
will show two Hubbard bands separated in energy by mU,
with m as the staggered magnetization. The bands will show
some dispersion governed by the scattering of the electrons
with the mean-field potential. Suppose that due to some frus-
trating effect long-range magnetic order is lost while keeping
well-formed magnetic moments. We expect that beyond
mean field if U is not too large �so that the disordered phase
is metallic� a QP will appear at the center of the Hubbard
bands with small spectral weight resembling the dynamical
mean-field theory �DMFT� picture.1 At high energies, how-
ever, electrons will sense a mean-field-like staggered poten-
tial for distances of the order of the correlation length �,
which can be quite long, and therefore the system will keep
substantial memory of the mean-field-like bands with their
dispersion. Roughly we expect that the spectral function will
look like the superposition of a Fermi-liquid-like spectral
function, with a small weight z close to the Fermi level, plus
a blurred mean-field-like spectral function in the presence of
long-range order with a large weight 1−z. This is at first
sight similar to the DMFT picture, but it differs in that in
DMFT there are no magnetic correlations surviving in the
disordered phase and the incoherent part becomes momen-
tum independent. We will show that in finite dimensions the
incoherent part carries important pieces of information en-
coded in the momentum dependence which within a DMFT
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approach would require the cluster extensions developed
more recently.6

Another example can clarify the concept of an incoherent
part with a strong momentum dependence which carries
physical information on the short-range physics. Let us con-
sider the more standard issue of large and small FSs in heavy
fermions represented in Fig. 1. In heavy fermions strongly
correlated electrons in a narrow half-filled f level hybridize
with electrons in a conduction band and give rise to a Kondo
resonance at the Fermi level formed by coherent QP states.
The width �and weight� of this QP band is usually quite small
and sets the scale of the coherence energy in these systems.
Now consider the momentum distribution function defined
by

nk �� d�A�k,��f��� , �1�

where f��� is the Fermi function and the spectral density

A�k,�� �
1

�
Im G�k,�� =

1

�

���k,��
�� − ���k,���2 + ��2�k,��

�2�

is proportional to the imaginary part of the electron Green’s
function with real �imaginary� part of the self-energy ��
����. It is crucial to recognize that nk involves all the exci-
tation energies, and its features might be dominated by the
incoherent part of the spectrum if the QPs have a minor
weight. Indeed strictly speaking the true FS at zero tempera-
ture is given by the small jump in the Fermi distribution
function determining the Fermi momenta of the QPs at kF

QP.
This FS is large and satisfies the Luttinger theorem with a
number of carriers including the electrons in the f level. This

FS would naturally be determined by following the QP dis-
persion. On the other hand the shape of nk is substantially
determined by the �incoherent� part of the spectral function,
which has strong weight at energies corresponding to both
the f level and the conduction band. This latter gives rise to
a rather sharp decrease in nk at a “fictitious” Fermi momen-
tum kc, corresponding to the FS that the electrons in the
conduction band would have in the absence of mixing with
the f level. If the hybridization between the f level and the
conduction band is turned off so that the QP weight z is
driven to zero, one reaches a situation in which the decrease
at kc becomes a discontinuity and the small jump at kF

QP

disappears. It is clear that the sharp decrease in spectral
weight at kc for finite hybridization has strong physical con-
tent for an observer who ignores the underlying model. Mu-
tatis mutandis this shows that a computation in which the
fluctuating order is artificially frozen can give some hints on
the distribution of the incoherent spectral weight in the less
trivial case with fluctuations.

The above ideas but with a more complicated order pa-
rameter may explain perplexing data on cuprates. Several
years ago underdoped La2−xSrxCuO4 �LSCO� compounds
were examined and a dichotomy was found in the FS deter-
mined by two different treatments of the data.7,8 On the one
hand the momentum dependence of the low-energy part of
the energy distribution curves was followed, thereby recon-
structing the low-energy QP dispersion. In this way a large
FS was found corresponding to the Fermi-liquid local-
density approximation �LDA� band structure and fulfilling
the Luttinger requirement that the volume of the FS encircled
the whole number of fermionic carriers n=1−x. On the other
hand the FS was determined from the momentum distribu-
tion nk, obtained by integrating the spectral function over a
broad energy window ��300 meV�. Then the locus of
momentum-space points where nk displays a sharp decrease,
marked a FS formed by two nearly parallel �weakly modu-
lated� lines along the kx direction and crossing two similar
lines along the ky direction. This crossed FS would naturally
arise in a system with one-dimensional stripes along the x
and y directions.

As a matter of fact the stripe Fermi surface has been ob-
served both in systems which show a striped ground state
and in systems where long-range stripe order has not been
detected.7,8 As in the heavy Fermion case for relatively small
z we expect that nk is dominated by the incoherent spectral
weight. According to our scenario nk should resemble the
Fermi surface of stripes in mean field regardless of whether
stripe order is static or fluctuating at low frequencies. Indeed
LDA computations in the presence of stripes with magnetic
and charge long-range order reproduce this Fermi surface.9

The experimental stripelike Fermi surface is not flat as
could be expected for a perfect one-dimensional band struc-
ture but shows some wavy features, which depend on the
details of residual hopping processes perpendicular to the
stripes. Remarkably the wavy features are well reproduced
by the LDA computation both with regard to amplitude and
periodicity, giving credibility to the idea that the static LDA
computation provides a snapshot of the fluctuating order in
the disordered phase �cf. also Ref. 10 for a more phenom-
enological approach�.

FIG. 1. Schematic view of heavy-fermion system with a Kondo-
type resonance arising at the Fermi energy EF from the mixing of a
deep narrow f level �not shown� and the conduction band �dashed
line�. Two QP bands arise E1,2�k�. The corresponding momentum
distribution function nk is shown below with a true Fermi momen-
tum kF

QP and a fictitious Fermi surface at kF
c .
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The main point is that the formation of QPs due to some
coherence effect is a small perturbation for the overall distri-
bution of spectral weight. Thus a careful study of nk can give
precious information on the proximity to some ordered
phase. By the same token the presence of QPs and a Fermi-
liquid-like Fermi surface are not incompatible with two-
particle responses �neutrons, optical� which show strong fea-
tures of ordering �such as stripes� at frequencies above �0.
This explains why computations of fluctuations on top of
stripe phases with long-range order11,12 explain well optical
conductivity and neutron-scattering data of systems without
long-range order. It also explains how nodal quasiparticles
can coexist with fluctuating stripe order.

In Sec. II we present a toy model of the Kampf-Schrieffer
type13 where the dichotomy between a Fermi-liquid-like
Fermi surface and a momentum-dependent incoherent part,
reflecting the fluctuating order, can be illustrated. Although
we study self-energy corrections self-consistently, the lack of
vertex corrections makes our computations reliable only in
weak coupling where QP weights are close to one. Within
this limitation one can show that the described scenario
holds.

In Sec. II we present the model, while in Sec. III we
present some numerical results. A discussion of the results
and our conclusions are reported in Sec. IV.

II. MODEL

In order to substantiate the above ideas we consider a
system of electrons coupled to a dynamical order parameter
which can describe charge ordering �CO� fluctuations or spin
ordering �SO� fluctuations or both. To fix ideas we consider
CO fluctuations described by an effective action

S = − g2�
q
�

0

�

d�1�
0

�

d�2	q��1 − �2�
q��1�
−q��2� . �3�

In order to simplify the calculations we consider a
Kampf-Schrieffer-type model susceptibility13 which is fac-
torized into an �- and q-dependent part; i.e.,

	q�i�� = W�i��J�q� �4�

The �real-frequency�-dependent part is W���
=	d�F�0,����2� / ��2−�2�, with F�0,� being a normalized
Lorentzian distribution function centered around �0 with
half-width �, F�0,������ / ���−�0�2+�2�. The momentum-
dependent part in D dimensions reads

JD�q� = N�
=1

D

�
�Q

�

�2 + 1 − cos�q − Q�
. �5�

N is a suitable normalization factor introduced to keep the
total scattering strength constant while varying ���−1 �with
� the CO/SO correlation length�. To simplify the treatment
and to make the effect of fluctuations as clear as possible, we
will mostly consider the case of spatially coherent fluctua-
tions. Although formally the correlation length � diverges,
the ordering is not static, and we will show that this is
enough for the spectral function to converge to the Fermi-
liquid Fermi surface at zero frequency.

The infinite correlation length case is described in D di-
mensions by

JD�q� =
1

4 �
=1

D

��q − Q� + ��q + Q� . �6�

In previous works the spatially smeared version of JD�q�
�Eq. �5�� was considered to describe the kink in the electron
dispersions14 and the �still experimentally controversial15,16�
isotopic dependence of these dispersions.17 The susceptibility
	 contains the charge-charge correlations in the case of
charge fluctuations and spin-spin correlations in the case of
magnetic fluctuations.

If only the dynamical part W��� was present in 	q�i��,
one would have a bosonic spectrum B���
=tanh�� / �kT��F�0,���� which is a “smeared” version of the
Holstein phonon considered in Ref. 18. The crucial feature of
susceptibility �4� is the substantial momentum dependence,
which describes the �local� order formation and reflects the
proximity to an instability with broken translational symme-
try.

The static limit F�0,����=����, together with an infinite
charge-charge correlation length ��→0� as the one consid-
ered in Eq. �6�, reproduces mean-field results for a long-
range phase.13,19 The static limit of Eq. �4� has been the
object of an intense activity based on the idea, pioneered in
Ref. 20, that different types of slow OP fluctuations �SO
�Ref. 13� or CO �Ref. 19�� can be treated as classical fluc-
tuations with time-independent correlations. The equivalence
of such static degrees of freedoms with quenched impurities
has more recently been formalized and cast in field-
theoretical language.21 Although they allow for �nearly� ex-
act solutions, the main drawback of these static approaches is
that they do not allow for the aimed separation of energy
�i.e., time� scales since to justify the static character of the
OP fluctuations, they assume that their relaxation time �OP is
much longer than the inelastic scattering rate of the electrons
�e, �OP��e.

21 Here we consider instead

F�0,���� = ��� − �0� �7�

representing a dynamical fluctuation oscillating at a fre-
quency �0 and therefore averaging out on time scales larger
than �OP�1 /�0.

In the present limit the problem has also the following
simple Hamiltonian formulation which we introduce for later
use:

H = �
k�

�kck�
† ck� + �0�bQ

† bQ + b−Q
† b−Q�

+ g�
k�

�ck−Q�
† ck��bQ

† + b−Q� + ck+Q�
† ck��b−Q

† + bQ�� ,

�8�

where ck�
† creates a free Fermion and b�Q

† creates a bosonic
collective mode excitation and �k��k−� with �k as the
noninteracting dispersion relation and � as the chemical po-
tential.

QPs at energies much larger than �0 see an essentially
static fluctuation and modify their dispersion as in the mean-
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field calculation mentioned above. For them the fluctuations
are static and, if the momentum-dependent part J�q� is
strongly peaked around the ordering wave vector Q, they are
scattered such as in the presence of a long-range symmetry
breaking. Their dispersions are modified accordingly. On the
other hand, for QPs at energies in a shell of width �0 around
the Fermi level the order-parameter fluctuations are far from
being static and do not have enough energy to excite them.
For these QPs the system is still in a uniform Fermi-liquid
metallic state. Therefore, if their dispersion is followed near
the chemical potential �, a large FS fully preserving the
Luttinger volume is found. In the following we explicitly
calculate the band dispersions and the FS to show this physi-
cal mechanism at work and the resulting dichotomy of the
FS.

Neglecting vertex corrections we iteratively solve at zero
temperature the following coupled set of equations for the
self-energy and the Green’s function

��k,i�� = −
g2

�
�
q,ip

	q�ip�G�k − q,i� − ip� , �9�

G�k,i�� =
1

i� − �k − ��k,i��
. �10�

To the best of our knowledge our self-consistent treatment
goes beyond previous solutions that remained at the pertur-
bative level. The latter can be obtained at lowest order by
replacing the Green’s function in Eq. �9� by the noninteract-
ing G0. For our specific model of the susceptibility the self-
energy becomes

��1��k,i�� = g2
 f��k+Q�
i� + �0 − �k+Q

+
1 − f��k+Q�

i� − �0 − �k+Q
� ,

�11�

where the superscript �1� denotes the order of the iteration
and f��k+Q�=��−�k+Q� is the occupation number. Inserting
this self-energy into Eq. �10� leads to a Green’s function
G�1��k , i�� which displays now two poles and which can be
used to compute ��2��k+Q , i�� �and thus G�2��k+Q , i���
and so on. The detailed procedure is described in the Appen-
dix.

For the sake of simplicity, we first implement our numeri-
cal analysis in one dimension and then we describe the case
of two dimensions, which is more relevant for layered mate-
rials.

III. NUMERICAL RESULTS OF FLUCTUATING ORDER

A. Numerical analysis in one dimension

1. Coherent order-parameter fluctuations

We first present the results for a one-dimensional model
with a commensurate ordering wave vector Q=� corre-
sponding to CO/SO with a doubling of the unit cell. In par-
ticular we consider a band of QPs �k=−cos�k� �we choose a
unit hopping parameter t=1 and a unitary lattice spacing�
coupled via a CO/SO mode given by Eqs. �4� and �6�. Figure

2 reports the simplest case in which only two poles are con-
sidered in the Green’s function given by G�1� for a generic
filling �n=0.67: here and in the following densities are de-
fined as total number of particles per site�. This is the stan-
dard mean-field solution, with a doubling of the unit cell and
a folding of the bands resulting in a double FS. In the ab-
sence of interaction the Fermi momentum would be given by
kF=n� /2=1.05. The dispersion relation instead displays two
Fermi points and a very different Fermi surface volume,
“violating” the Luttinger theorem.

The situation is very different for a dynamical fluctuation.
In Fig. 3 we report the spectral function with �0=0.3 and
moderately weak coupling g2 /�0=0.5. Also in this case
shadow bands appear so that the electronic structure has
bands close to the location of the bands in the broken sym-
metry state. The shadow bands, however, do not reach the
Fermi level and one has only one FS point at k=kF. There-

FIG. 2. �Color online� Upper panel: two-pole band structure in
one dimension for g=0.5t, �0=0, and particle density n=0.67. The
width of the curve is proportional to the weight of the state, and
energies are measured with respect to EF. Lower panel: momentum
distribution curve.

FIG. 3. �Color online� Upper panel: two-pole band structure in
one dimension for g2 /�0=0.5, �0=0.3, and electron density n
=0.57. The width of the curve is proportional to the weight of the
state, and energies are measured with respect to EF. Lower panel:
momentum distribution curve. For k�2 the occupation number nk

has been scaled by a factor of 5 to enhance the visibility.
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fore the Luttinger theorem is satisfied since the divergent
pole in G�kF ,�=0� from the static solution now turns into a
step so that G�k ,�=0��0 for k�kF.

The spectral function can be written in the Lehmann rep-
resentation on the real axis as

A�k,� � �� = �
�

���
N+1�ck�

† ��0
N��2��� − E�

N+1 + E0
N� ,

A�k,� � �� = �
�

���
N−1�ck���0

N��2��� − E0
N + E�

N−1� ,

�12�

where A�k ,�� has structure at the energies of the excitation
of the system with one added particle ����� or one re-
moved particle �����. The result of Fig. 3 can be under-
stood from the low-energy excitations of the system when
g=0. These are listed in Table I, and the corresponding ex-
citation energies are shown in Fig. 4. For g=0 all the weight
is in the main band labeled �k because the matrix elements in
Eq. �12� vanish when one boson is present. The effect of a
finite g is to give some spectral weight to the “shadow” band
at �k−Q��0 and to introduce some level repulsion when the
bands cross. The important point is that the shadow band
never touches the Fermi level but it is separated from it by
the energy to create the bosonic excitation. We associate the
main band with the QP band and the shadow band with the
incoherent spectral weight. Clearly close enough to the
Fermi level only the QP band exists.

Notice that the shadow bands are quite similar to the case
of a symmetry-broken state �but for a shift in energy of order
�0=0.3, which is small on the scale of the hopping t=1�.

Because the QP states at the Fermi level are negligibly
affected by the scattering with the dynamical ordering mode,
the FS �here represented by points� is preserved and no
shadow branches appear at low energy. Therefore already
this simple weak-coupling case shows that an ordered state
would be inferred from the presence of shadow bands at high
energies, while the low-energy QPs are characteristic of a
uniform state.

In Fig. 3 we also report the momentum distribution nk.
From this quantity one can see that some weight is indeed
present at high energy via the shadow band appearing at
momenta above k��2.3. This is a signature of some ordering
in the system. However, since the CO/SO is dynamical the
dispersion discontinuously jumps from above to below the
Fermi level without producing an additional branch to the FS
and with no violation of the Luttinger theorem. In this last
respect we explicitly checked that the Green’s function at
zero frequency is positive for k�kF, it changes sign through
a pole at kF and stays negative all the way up to �. The
Fermi momentum kF is the same that one would have in a
noninteracting tight-binding system with the same number of
particles kF=n� /2 with n=0.57 in this case.

The above picture remains valid if additional poles are
considered in the Green’s function provided that the QP-CO/
SO-mode coupling is in a weak-to-moderate regime. Figure
5 reports the case of three poles for the same parameters of
Fig. 3. The increased allowed number of poles better repre-
sents the shift of spectral weight at high energies induced by
multiple shadow bands. Nevertheless, the finite frequency of
the mode protects the low-energy QPs from being scattered
and leaves the low-energy spectrum unaffected: The FS is
still formed by just two points despite the appearance of
several shadow bands at high energy typical of a CO/SO
state. The effect of the self-consistency is to “blur” the
shadow bands, but still the incoherent spectral weight retains
a strong momentum dependence.

TABLE I. Low energy excitations in the g=0 limit. The central
column shows the excitation energy. Notice that �−k=�k.

Addition ��0

State E�
N+1−E0

N Momentum

ck�
† ��0

N� �k k

ck−Q�
† bQ

† ��0
N� �k−Q+�0 k

Removal ��0

State E0
N−E�

N−1 Momentum

c−k���0
N� �−k k

c−k+Q�b−Q
† ��0

N� �−k+Q−�0 k

0.0 0.5 1.0 1.5 2.0 2.5 3.0

�0.5

0.0

0.5

1.0

1.5

k

Ω

ΞkΞk�Q �Ω0

Ξk�Q �Ω0

FIG. 4. �Color online� Schematic electronic structure for
g=0.

FIG. 5. �Color online� Upper panel: six-pole band structure in
one dimension for g2 /�0=0.5 and �0=0.2. The electron density is
n=0.55. The width of the curve is proportional to the weight of the
state, and energies are measured with respect to EF. Lower panel:
momentum distribution curve. For k�2 the occupation number nk

has been scaled by a factor of 5 to enhance the visibility.

FERMI SURFACE DICHOTOMY IN SYSTEMS WITH… PHYSICAL REVIEW B 79, 125111 �2009�

125111-5



Upon increasing the QP-CO/SO-mode coupling g one
eventually enters a regime where our noncrossing perturba-
tive scheme neglecting vertex corrections breaks down and
the Luttinger theorem is violated. This situation is reported in
Fig. 6, where a second branch of the FS appears due to the
strong bending down of the band at momenta k�k�. In this
case the Green’s function at zero frequency G��=0� changes
sign twice �and diverges� at the two Fermi momenta kF1 and
kF2 while it changes sign passing through zero at k=k�,
where the jump in the dispersion below � signals a diver-
gence of the self-energy �Eq. �11��. One can check explicitly
that the volume corresponding to a positive G��=0� is larger
than the one given by occupied states in the noninteracting
system; thus, Luttinger theorem is not satisfied. We believe
this is an artifact due to the lack of vertex corrections which
become important as the coupling is increased.

The apparent success of this simple theory on illustrating
the spectral function of a system with fluctuating order is
encouraging. However, a different problem arises if one con-
siders the half-filled case. Without long-range order we
would expect a metallic state if we were able to solve the
model exactly. On the contrary commensurate scattering in
the perturbative solution produces the unphysical result of a
gaped FS in contrast with the fact that no true broken sym-
metry is present in the system. On the other hand it is not
surprising that our perturbative approach fails when our sin-
gular interaction 	�q ,�� connects two degenerate states at
the FS as it occurs in this case. We believe this failure is due
to the lack of vertex corrections which we expect to suppress
the scattering at the Fermi level. We have tested this idea
phenomenologically by assuming that the QPs at the Fermi
level are protected against this singular scattering by a mo-
mentum dependence of the coupling of the form

g̃��̃k, �̃k+q� = g tanh� �̃k

�0
�tanh� �̃k+q

�0
� . �13�

One technical remark is in order here. Perturbatively one
could introduce on the rhs of Eq. �13� the bare QP dispersion

�k. However, at moderate-strong couplings the QP disper-
sions are substantially modified by the coupling with the
modes to dressed QP dispersions �̃k. To suppress the scatter-
ing of the dressed QPs near the true FS, one must insert in
Eq. �13� the renormalized dispersions �̃k. This need of a
self-consistency scheme considerably complicates the calcu-
lations and led us to consider only simple symmetry break-
ings �cell doublings�.

Although form �13� is adopted on a purely phenomeno-
logical basis, we would like to remind that several micro-
scopic calculations22,23 show that in strongly correlated sys-
tems the coupling between QPs and phonons is severely
suppressed at low energies. This suppression is mostly effec-
tive when the exchanged momenta vFq are larger than the
typical exchanged energy �0. This is the case here, where the
exchanged momenta are peaked at sizable Q’s.

Figures 7�a� and 7�b� illustrate the effect of this vertex
correction in the half-filled case n=1, where it plays a crucial
role to restore the metallicity of the system. For the previ-
ously considered cases of generic filling we find that the
vertex corrections play a minor role and the results obtained
with g̃ differ little at moderate coupling from those reported
above. However, for strong coupling the phenomenological
form of the vertex �Eq. �13�� again prevents the system to
violate the Luttinger theorem as, e.g., in the case of the result
shown in Fig. 6.

2. Finite range fluctuations

Since in realistic systems the dynamical fluctuations have
a finite coherence length and a finite lifetime, we also inves-

FIG. 6. �Color online� Two-pole band structure in one dimen-
sion for g2 /�0=2 and �0=0.3. The electron density is n=0.83. The
width of the curve is proportional to the weight of the state, and
energies are measured with respect to EF. Lower panel: momentum
distribution curve.

FIG. 7. Two-pole band structure in one dimension for g2 /�0

=0.5 and �0=0.3 at half-filling n=1. In �a� the bare vertex g is
used, while in �b� the phenomenological vertex g̃ of Eq. �13� is
used.
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tigated the case of a one-dimensional QP band exposed to
fluctuations having finite � and � in F�0,� and in Eq. �5�.
Obviously the finite extension in space and time of the fluc-
tuations produces broadening in the spectra. As it is natural,
one finds that the broadening in the momentum direction is
ruled by �, while � rules the broadening along the energy
axis. As it clearly appears in Fig. 8, the broadening of the
spectra does not spoil the essential feature of the coupling
with a dynamical mode �cf. Fig. 3 for �=�=0 but same
parameters otherwise�. The shadow bands persist as high-
energy signatures of a �local� order, while the FS stays un-
changed and Luttinger theorem is obeyed provided the mode
is sufficiently narrow in energy ����0� so that one can ne-
glect the “leakage” of weight down to the Fermi level.

3. Pairing effects

We further explore our one-dimensional model to investi-
gate the effects of a particle-particle pairing. To this purpose
we introduce in our bare QP band structure a finite gap �,
which, as it is usual for this type of pairing, is tight to the FS.
Accordingly the Bogoliubov particle-hole mixing occurs
near the FS and the QP band opens a gap centered at the
Fermi level. The branch below the Fermi level bends down,
giving rise to a maximum occurring at a momentum coincid-
ing with the Fermi momentum of the unpaired QPs. Figure 9
displays this effect for our typical parameter set at a generic
filling. In particular one can see that the particle-particle pair-
ing only modifies the low-energy states over scales of order
� while leaving unchanged the high-energy states, which
still display the clear effect of the dynamical ordering. This
finding shares close resemblance with recent scanning tun-
neling experiments in cuprates,29 where an energy scale �0
�analogous to our �0� separates the low-energy Bogoliubov
coherent QPs from the high-energy excitations carrying in-
formation of a charge ordering tendency. The one-
dimensional character of our toy model helps in separating
these different excitations in momentum space. A more de-
tailed analysis of this issue would require modeling specific
features of the cuprates and is beyond the scope of the
present paper, but we find this preliminary one-dimensional
finding rather suggestive.

B. Numerical analysis in two dimensions

Once the main effects of the dynamical mode exchange
have been presented in one dimension, we illustrate the two-
dimensional case. For the bare electron dispersion we use

�k = − 2t�cos�kx� + cos�ky�� − 4t� cos�kx�cos�ky� − � .

For concreteness the parameters have been chosen to repro-
duce the FS of LSCO, taking t=342 meV, t� / t=−0.2, and
�=−0.1t. For the mode frequency and coupling, we choose
�0=50 meV and g2=1.5�0, while we consider only coher-
ent fluctuations with vanishing broadenings ��=�=0�. To
avoid too many band foldings, which could complicate the
analysis, we choose an order given by a simple cell doubling
in the x direction. This gives rise to Q= ��� ,0�. Of course
this does not correspond to the charge/spin modulation ob-
served in LSCO cuprates, but it better fits our simplicity and
illustrative purposes �on the other hand it corresponds to the
spin ordering in FeAs stoichiometric compounds24,25�.

Figures 10�a� and 10�b� report the two-dimensional FS
obtained by integrating the spectral density in Eq. �1� over a
small �Wl=10 meV� and a large �Wh=100 meV� energy
range, respectively. Only two poles have been considered in
the recursive Green’s function, and the QP-mode coupling is
dressed via the “self-consistent” vertex corrections �i.e., cor-
rected by the interaction itself, see the remark after Eq. �13��.
These corrections are required here because at the typical
fillings we consider, the two-dimensional FS has branches
connected by the critical wave vectors �the so-called “hot
spots” in the framework of superconducting cuprates�. The
states connected by Q would display a gap opening similar
to the �spurious� one obtained in one dimension at n=1. For
this reason we decided to phenomenologically suppress this
exceedingly strong effect which we attribute to the simple
perturbative treatment of the singular interactions in the
model.

In the case of integration over the low-energy states only,
one obtains a FS closely resembling the one of unperturbed
free QPs. On the contrary, upon integrating over a broad
energy range, the “FS” appears folded and closely tracks the
one expected for a system with a static long-ranged broken

FIG. 8. Two-pole band structure in one dimension for g2 /�0

=0.5 and �0=0.3 at generic filling n=0.57. Here a finite inverse
coherence length �=0.02 and time �=0.1 are used.

FIG. 9. Two-pole band structure in one dimension for g2 /�0

=0.5 and �0=0.3 at generic filling n=0.4. Here a finite inverse
coherence length �=0.02 and time �=0.1 are used as well as a
finite pairing gap �=0.1.
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symmetry. Therefore, also in two dimensions we see that
coupling the QPs with dynamical modes preserves the QPs
from a strong rearrangement of all the states �including those
near the FS�. Notice that the vertex corrections are relevant
in this regard only around the hot spots but do not prevent
the generic formation of shadow bands or related features
appearing in nk.

IV. DISCUSSION AND CONCLUSIONS

The results of Secs. I–III clearly indicate that dynamical
CO/SO fluctuations, at least in a not too strong coupling
regime, do not produce substantial effects on QPs around the
FS. Therefore the absence of low-energy signatures of
CO/SO is compatible with a dynamical type of order. For-
mally we have used a Kampf-Schrieffer-type13 approach ex-
tended by a self-consistent evaluation of self-energy correc-
tions. However, due to the lack of vertex corrections our
computations are restricted to weak coupling; therefore, QP
weights are close to one and the incoherent weights are
small. To have the reverse ratios of weight we need to go to
strong coupling, which is unfortunately not feasible. There-
fore we can only speculate on what the spectral function will
look like.

We expect that as the coupling is increased some features
of our computations will persist. For example the fact that
the momentum-dependent incoherent part of the spectral
function is separated by a bosonic excitation from the Fermi
level is expected to be quite robust in strong coupling. In-
deed one can construct approximated excitations as in Table
I but with heavily dressed QPs rather than with particles
which suggest that a similar physics will be at play. More
complicated excitations may give spectral weight closer to
the Fermi level, but for those the momentum dependence
will be completely washed out, providing a structureless
background.

The fact that the incoherent part should resemble the elec-
tronic structure of the ordered state follows from continuity
arguments. For example, as one crosses a transition where
the spin gets disordered at low energies one does not expect
dramatic changes in the overall distributions of weight in the

spectral functions. Those will be determined to a large extent
by the short-range correlations which may change very little
across the order-disorder transition. In this sense a faint QP
peak emerging at low energies, which is certainly a dramatic
perturbation from the point of view of the Fermi-liquid prop-
erties, becomes a small perturbation from the point of view
of the spectral weight distribution. Thus we expect this re-
semblance to persist in the strong coupling limit.

The scenario we propose is of obvious pertinence in cu-
prates, where standard angle-resolved photoemission spec-
troscopy �ARPES� experiments usually report a Fermi-liquid
Fermi surface or at least well-defined nodal particles which
at first sight are incompatible with vertical stripes. On the
other hand other experiments display the signatures of dy-
namic order such as the famous hourglass dispersion relation
observed in cuprates26 even when CO/SO is not detected.27,28

This hourglass dispersion has been explained as being due to
the fluctuations on top of an ordered ground state which will
not display nodal quasiparticles.11 Our analysis reconciles, at
least qualitatively, this apparent contradiction: fluctuating or-
der can coexist with a Fermi-liquid-like Fermi surface �in-
cluding nodal states� and still behave at energies larger than
�0 as a stripe-ordered state.

It is also interesting that recent scanning tunneling mi-
croscopy data29 reveal the simultaneous existence of low-
energy �Bogoliubov� QPs and high-energy excitations related
to CO which thus closely agrees with the prediction of our
analysis. In particular, Fig. 9 clearly shows the simultaneous
presence of a superconducting gap with Bogoliubov QPs at
low-energy and of high-energy spectral features, which
clearly carry information on a spatial order.

As we mention in the introduction Zhou et al.7,8 found
different Fermi surfaces when analyzing the spectral function
integrated in a narrow window around the Fermi level or in a
large energy window. Figure 10 illustrates the weak-coupling
version of these effects with the small window Fermi surface
being Fermi-liquid like and the large window pseudo-Fermi
surface showing the effects of fluctuating order.

The dichotomy between low- and high-energy spectral
features as discussed in the present paper is closely related to
another dichotomy observed in ARPES experiments, namely,
the one between nodal and antinodal QPs in underdoped

(b)(a)

FIG. 10. Two-dimensional FS obtained from the momentum distribution function nk in Eq. �1�. The spectral function has been integrated
over: �a� a low-energy range Wl=10 meV; �b� a high-energy range Wl=100 meV.
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cuprates.30 For stripelike charge order-parameter fluctuations
the characteristic scattering vectors are of a comparable mag-
nitude than the separation of the Fermi surface segments at
the antinodal regions. As a consequence �and quantitatively
analyzed in Ref. 14 within a similar formalism� the scatter-
ing is much more effective for antinodal states than for nodal
ones since nodal quasiparticles get protected by momentum
conservation in addition to the dynamical protection dis-
cussed here. Antinodal states will be affected by the vertex
corrections for which we have only a weak-coupling guess
and therefore require further study, but it is conceivable that
spectral weight at the Fermi level will be suppressed in these
regions due to transfer of spectral weight to the shadows.

The ascription of the dichotomy between nodal and anti-
nodal QPs to low-energy charge order-parameter fluctuations
is also discussed in Ref. 19 within a frustrated phase-
separation scenario. For charge scattering along the Cu-O
bond direction one also obtains a FS where the spectral
weight is confined to the nodal regions and thus is compat-
ible with a momentum-dependent pseudogap in the sense of
an anisotropy in nk along the FS.

One difficulty in interpreting data in the cuprates is the
presence of disorder. It is possible that the system has an
ordered ground state but, due to quenched disorder or a com-
plex energy landscape,31 it never becomes ordered. As for a
structural glass, the system has long range in time positional
order but a structural factor characteristic of a disordered
state. In this case scattering probes will fail to detect order
even though the charge is not fluctuating and is inhomoge-
neous. Local probes, however, should be able to detect the
ordering but those are more scarce and more difficult to in-
terpret. Both static disorder and our picture will predict simi-
lar results at high energies but will strongly differ at low
energies where only within our picture one recovers a uni-
form Fermi liquid. It is not clear at the moment which effect
prevails in different systems.

There are cases in which CO has been detected32–34 and
still the stripe Fermi surface computed in LDA �Ref. 9� and
measured from the nk does not show up close to the Fermi
level. For example, no visible shadow FSs appears in Ref.
35, where the FS of a CO LBCO sample only displayed
Fermi arcs due to a particle-particle pseudogap. It is possible
that in this case the system charge orders because the com-
mensuration with the underlying lattice provides a pinning
potential, which helps to stabilize the charge but the spin is
still quantum disordered. Indeed spin order breaks a continu-
ous symmetry whereas commensurate CO, as usually ob-
served in cuprates, only breaks a discrete symmetry. There-
fore the former is much more fragile than the latter. Thus we
propose a state in which the charge is ordered, but for the
spin our dynamical picture applies. One can still wonder why
one does not see shadows due to the CO. One should keep in
mind that the CO is a minor perturbation to the electrons
compared to SO. In a SO state the effective potential seen by
the electrons oscillates on a scale of U. In order to check the
effect of CO alone without SO we have computed the FS in
the presence of a charge modulation similar to the one ob-
served. The result is a large Fermi-liquid-like FS with weak
distortions.36 These may be related to features that only very
recently have been resolved for stripe-ordered LSCO

codoped with Eu.37 It is only at moderate energies, above �0
for the magnetic excitations, that the mixed CO-SO fluctua-
tions produce shadow features in the spectra and give rise to
“crossed FSs” such as those observed in LSCO in Refs. 7
and 8.

A momentum dependence of the so-called “hump” fea-
tures at relatively high energies �of order 0.1 eV� has also
been detected in Bi2Sr2CaCu2O8+�.38 One can speculate that
scattering with a magnetic mode related to SO as described
here is responsible for this effect. �The authors offer a related
explanation involving the �� ,�� spin resonance�. An analy-
sis of nk similar to the one carried out for LSCO in Refs. 7
and 8 could also help in discerning whether this is just a
remnant effect of the proximity to the insulating antiferro-
magnet or due to fluctuating stripes.

In conclusion, in light of the analysis carried out in this
paper, we propose that cuprates are affected by finite-energy
spin/charge fluctuations related to proximity to ordered
phases. Whether CO is actually realized in a static way is
rather immaterial from the point of view of low-energy
ARPES spectra due to the weakness of the charge modula-
tions. Only when the energy is above the spin and charge
fluctuating scale the electronic spectrum is sizably affected.
At these energies, however, the detection of CO-SO-related
pseudogaps �not tied to the FS� is quite hard due to the
largely incoherent character of the spectral lines. Only in
passing through nk does this dynamical tendency to order
become visible.

ACKNOWLEDGMENTS

We acknowledge interesting discussions with C. Castel-
lani and C. Di Castro. M.G. acknowledges financial support
from MIUR Cofin 2005 �Contract No. 2005022492� and
M.G and G.S. from the Vigoni Foundation.

APPENDIX: ITERATIVE SOLUTION OF THE MODEL

In this Appendix we give a detailed description of the
iterative solution of the two coupled equations �9� and �10�.
Inserting the lowest-order self-energy ��1��k , i�� �Eq. �11��
into Eq. �10� leads to a G�1��k , i�� which displays two poles
and which can be used to compute ��2��k+Q , i�� �and thus
G�2��k+Q , i��� and so on. This procedure therefore generates
the series

G�1��k,i�� → G�2��k + Q,i�� → G�3��k,i�� → G�4��k + Q,i��

→ G�5��k,i�� . . . → G�n−1��k + Q,i�� ,

where G�n−1��k+Q , i�� has an n-pole structure that can be
represented as

G�n−1��k + Q,i�� = �
s=1

n
��s

�n��k��2

i� − Es
�n��k�

. �A1�

Consequently the nth order for the self-energy is given by

��n��k,i�� = g2�
s=1

n
��s

�n��k��2

i� � �0 − Es
�n��k�

�A2�

and the sign of �0 in the denominator depends on whether
f�Es

�n��k��=0,1 �cf. Eq. �11��.
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Examining the equation for the n-order Green’s function
�i�−�k−��n+1��G�n+1�=1 it turns out that the solution can be
conveniently obtained by solving the matrix equation

�i�1= − M=�K= = 1= �A3�

with

M= =�
�k g�1

�n��k� g�2
�n��k� ¯ g�n

�n��k�
g�1

�n��k� E1
�n��k� � �0 0 ¯ 0

g�2
�n��k� 0 E2

�n��k� � �0 ¯ 0

] ] ] ] ]

] ] ] ] ]

g�n
�n��k� 0 0 ¯ En

�n��k� � �0

� . , �A4�

and we can identify the �n�-order Green’s function as the
�11�-element of the matrix K. Denoting by T= the transforma-
tion which diagonalizes M=, thereby yielding �n+1� eigenval-
ues Es

�n+1��k�, the �n�-order Green’s function is thus obtained
as

G�n��k,i�� = �
s=1

n+1
�T1s�2

i� − Es
�n+1��k�

, �A5�

which also yields the new weights �s
�n+1��k��T1s.

This scheme allows for a systematic evaluation of the
Green’s function up to some given order �n�. In the first step,
the matrix M= is of order 2�2 with �1

�1��k�=1 �cf. Eq. �9��
and En

�1��k�=�k+Q. Diagonalization yields the weights and en-
ergies of G�1��k , i�� which can be used to construct the ma-
trix for G�2��k+Q , i�� �where the �11�-element of M= in Eq.
�A4� is �k+Q� and so on. This procedure creates spectral func-
tions with more and more poles; however, in the case of a not
too strong coupling, it will converge in the sense that the
weight of newly created poles becomes smaller and smaller
so that the series can be cut at the desired accuracy.
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